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A calculation is given of the velocity which a cloud of identical gas bubbles 
acquires when the liquid in which the cloud is immersed is impulsively accelerated. 
From the results an expression follows for the effective virtual mass of a bubble in 
a gas-bubble/liquid mixture. Further consideration is given to that part of the 
momentum flux in the mixture associated with relative motion between liquid 
and bubbles. An expression for this quantity is derived which appears to differ 
from the one used in practice. It is shown that qualitative support for the expres- 
sion obtained here is provided by experimental observations reported in the 
literature. 

1. Introduction 
When a body moves through an unbounded perfect fluid, the momentum of the 

fluid is indeterminate. A useful quantity, however, is the impulse, which is equal 
to the relative velocity between fluid and body multiplied by the virtual mass 
of the body. Kelvin (see Lamb 1932, chap. 6)showed that in an unbounded fluid 
the external force on the body equals the rate of change of the sum of the impulse 
of the fluid and the momentum of the body. The dynamics of the relative motion 
are governed by this relation. In  the case of a spherical gas bubble moving 
through a liquid, the momentum of the bubble is negligible compared with the 
impulse of the liquid. The virtual mass of a sphere is & p ~ ,  where p is the density 
of the liquid and 7 the volume of the sphere. If the liquid is linearly accelerated 
with acceleration duldt,  the velocity v of the bubble then follows, according to 
Kelvin’s results, from the relation 

d du 
dt dt 
- & p ( v  - u) = p7 - 

The left-hand side is the rate of change of the impulse of the liquid, the right- 
hand side the external force. When the liquid is viscous, a resistance term has to 
be included on the right-hand side of (1.1). The resulting equation then provides 
a realistic description of the relative motion as long as a boundary layer on the 
bubble is either absent (no surface-active agents in the liquid) or does not 
separate from the bubble (when the presence of surface-active agents leads to a 
no-slip condition on the interface). Kelvin’s result holds only when the fluid is 
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FIGURE 1. The liquid is accelerated from rest t o  a velocity U,, by the piston. 
As a result the bubbles in the cloud start to move with velocity (v). 

unbounded and is no longer applicable when other bodies are present in the fiuid. 
The reason for this is that the external force on the test body includes forces due 
to the motion of these other bodies as well. In  this paper we investigate the rela- 
tive motion of spherical gas bubbles in a dilute gas-bubblelliquid mixture. 
More specifically, we shall calculate the average velocity (v) of a cloud of identi- 
cal spherical gas bubbles of radius a when the liquid in which the cloud finds 
itself is accelerated from rest to a velocity U,. 

We shall also consider the momentum flux in the mixture. The reason for doing 
this is the following. As mentioned above, associated with the rectilinear motion 
of a single sphere through a fluid is an impulse tp(v - u) 7. I n  a mixture containing 
n bubbles per unit volume, there is a flow of impulse, per unit surface normal to 
the flow, of magnitude &prnv(v - u). I n  describing two-phase flows, various 
writers have included the spatial rate of change of this term in the momentum 
equation, identifying momentum with impulse. Because this cannot be justified, 
it is desirable to know in what way, if any, the relative motion enters the expres- 
sion for the momentum flux in the mixture. We consider the situation sketched 
in figure 1. A cloud of N spherical bubbles of radius a is dispersed randomly in 
a volume V in an infinite duct whose diameter is large compared with any 
length scale associated with the bubbles. At t = 0 the fluid far away from the 
cloud is instantaneously accelerated, e.g. by a piston, to a velocity U,. We 
want to know the average of the velocities which the bubbles assume. We define 

n = N / V  (1.2) 

as the number density and LX = $ma3 (1.3) 

as the concentration by volume of bubbles. We assume that a is small with 
respect to unity. Our analysis to find the average bubble velocity runs parallel, 
in many respects, to that by Batchelor (1972) in calculating the sedimentation 
speed of a cloud of heavy particles in a liquid. 

We need to know (i) the velocity which a single bubble assumes when an 
arbitrary velocity field is instantaneously generated in the ambient liquid and 
(ii) the velocity which a pair of bubbles acquires when the ambient liquid is 
impulsively accelerated. In  the next two sections we consider these problems, 
because they have not been considered in the literature. Voinov, Voinov & 
Petrov (1973) investigated the hydrodynamic interaction between bodies in a 
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perfect fluid. However, their analysis is restricted to bodies which are a large 
distance apart. In  the present problem it will emerge that it is the interactions 
between bodies which are close to each other which are of primary importance. 

2. The motion of a spherical bubble in an arbitrary potential flow 
We consider a perfect fluid, at rest for times t < 0, in which a spherical gas 

bubble of radius a is immersed. At t = 0 a velocity field which has, in the absence 
of the bubble, a potential q50, is instantaneously generated in the fluid. As a result 
of the motion of the liquid the bubble will assume a velocity v, and the resultant 
potential will be q50 + q51. Since the bubble can be regarded as massless, the resul- 
tant force exerted on the bubble by the liquid is zero a t  all times and therefore, 
with pressure p and surface element dA,  

where t = 0, indicate times just before and just after t = 0, respectively. By 
using Bernoulli's theorem it follows from (2.1) that 

/ (Qo+q51) dA = 0- (2.2) 

The meaning of (2.2) is that the impulsive forces on the sphere generated by the 
original motion of the liquid and by the relative motion between liquid and 
bubble are equal but opposite in sign. Apart from (2.2), the resulting potential 
has also to satisfy the boundary condition 

V($,+#,).n = v.n  (2.3) 

on the sphere, n being a unit vector normal to the surface of the sphere. If v 
were known, (2.3) would, for given q50, uniquely determine $l. However, v is 
unknown and must be such as to satisfy (2.2). In  solving this problem, two 
properties of the potential flow around a sphere are of great assistance. The 
first is that, for any harmonic function with singularities outside the sphere, the 
surface and volume averages over the sphere are equal to the value of that 
function a t  the centre of the sphere (see, for example, Kellog 1953, p. 223). 
Thus, if the value of V$o at the centre of the sphere is denoted by (V#o)c, we have 

r being, as before, the volume of the sphere. The second useful property is given 
by Weiss's sphere theorem (Milne-Thomson 1968, p. 520). This states that, if in 
an unbounded potential flow with potential q5 a sphere is placed at r = 0 and 
if the singularities of q5 are all outside the sphere, the resulting potential is 

where (R, w, 0) are spherical co-ordinates with origin at r = 0. We cannot apply 
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Weiss's theorem to $, because in the motion described by (2.5) the sphere is 
kept, by external forces, a t  rest, whereas our spherical bubble moves as a result 
of the impulsive forces associated with the generation of 4,. We can apply 
Weiss's theorem, however, to that part of 4, which produces no motion at the 
centre of the sphere. Denoting (V$o)c by u, we write $, as 

$, = u.r+qJ,. (2.6) 

qJodA = 0. (2.7) 

Because (u. r) dA = UT, we have, on account of (2.4), 

s 
The response of the bubble to 6, can be obtained from Weiss's theorem (2.5), 
whereas the response to the uniform flow with velocity u is well known: a 
doublet of strength 4a3(v - u) at the centre of the bubble. The potential 4, + #1 
therefore becomes 

This potential, while satisfying (2.3), must satisfy (2.2) as well. At r = a, the 
last term on the right-hand side of (2.8) may be written as 

On account of (2.7) and because 6, is regular inside the sphere the integral of 
this expression over the surface of the sphere vanishes. We must choose v such 
that, upon substitution of (2.8) into (2.2), the integral comprising the first and 
third terms on the right-hand side of (2.8) is zero. As is easily verified, this isthe 
case for 

We have in this way obtained the interesting result that a massless sphere 
moves, in an impulsively generated flow, with three times the velocity that this 
flow has a t  the location a t  t = 0 of the centre of the sphere. For a uniform flow, 
this follows immediately from (l.l), Note that the result expressed by (2.9) is 
independent of the radius of the sphere. 

(2.9) V = 3U = ~ ( V $ O ) ~ .  

3. The motion of a pair of spheres in a perfect liquid 
In  this section we deal with a pair of identical bubbles immersed in a liquid 

which is instantaneously accelerated to a uniform velocity U,. We consider first 
the configuration of figure 2, where the line of centres is aligned with U,. 

Let the unknown velocity of each of the spheres be V. If sphere B were alone 
in the liquid the velocity distribution would be 

U,a3 3U,.a3r 
u = uo--+ r, r > a ,  

73 r5 

r being measured with respect to the centre 0, of B. This is the velocity field of 
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A B 

FIamE 2. Two identical bubbles with their centres a distance s apart aligned with 
the liquid velocity U,. 

a sphere moving with velocity 3U0 through a liquid with velocity U,. The 
velocity a t  0, is 

where s is the distance between the centres. If sphere A were now placed in the 
liquid and only the boundary condition on A satisfied the sphere would, according 
to our previous result (2.9), move with velocity 3u,. However, the boundary 
condition on B also has to be satisfied, which will give rise to an additional 
velocity w induced at the centre of A by its image in B, whence 

U, = u,(i +2a3/~3), (3.2) 

v = 3(u,+ w). (3.3) 

q5 = Uo.r-t-$ (3.4) 

under the conditions V $ . n  = (v-Uo).n (3.5) 

To find w we have to solve exactly the problem of finding the potential 

on each of the spheres A and B and [cf. (2.2)] 

J q5dA=O. 
A 

The potential of the motion of two spheres in the direction of the line of centres 
is treated in Lamb (1932, $98) by using the method of reflexions. The potential 
is found as an infinite series but the computation of the coefficients is a matter 
of great algebraic complexity. Recently Jeffrey (1973) used for two-sphere poten- 
tial problems another method which he calls the method of twin spherical 
expansions. 

Dr Jeffrey pointed out to the author that the results of Jeffrey (1973) could 
be used for the present problem and provided the author with the necessary 
information not in Jeffrey (1973). In  the appendix, by Dr Jeffrey, the most 
important information is given. Jeffrey (1973) considers two spheres of heat 
conductivity A, in a material of conductivity A,. In  the absence of the spheres 
the temperature field is T = G . r. In  the presence of the spheres the temperature 
field is written as 

For non-conducting spheres the boundary condition is 

T = G.r+$.  (3.7) 

V$.n= - G . n  (3.8) 
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on each of the spheres. Upon introducing 

4, = -(v-U,).r+$, (3.9) 

with the condition (3.5) on $, it  is seen that our problem is formally the same as 
this steady heat-conduction problem when we replace T by 4, and G by 
- (v - U,). For the case of two spheres aligned with G, Jeffrey finds 

with 

i . IATdA = TGL,(:), (3.10) 

(3.11) 

i being the unit vector in the direction of the line of centres and T being the 
volume of a sphere, as before. The coefficients KO,, follow (see appendix) from 

Kmno = ( - &In, (3.12) 

From (3.4), (3.6) and (3.9) it  follows that the condition on 4, is 
L 

(3.14) 

(3.15) 

With #, = T and G = - (v- U,) we deduce from (3.10) and (3.15) that 

(v-Uo)+Uo = (w-U,)L1(a/s). (3.16) 

Making use of KO,, = 1 and KO,, = KO,,, it  follows that 

(3.17) 

The interaction between the two spheres may be expressed in terms of the 
virtual mass. We write, in the spirit of (i.l), 

d a 
- p ( v -  U,) = --pTU,. at 

Then the virtual mass is given by the quantity in braces in (3.17) multiplied by 
S ~ T .  Calculating a few coefficients Kelp, we obtain 

(3.18) 

The added mass is smaller than for a single bubble, for which a/s = 0. The 
physical explanation is that each bubble induces [see (3.2)] at the centre of the 
other a velocity which is in the direction of U,. The accelerated liquid can there- 
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fore bring the pair of bubbles to a larger velocity than it could a single bubble. 
From (3.17) it  follows that 

m 

v = 3U, 1+ 9 = 3  Kol,(E)”)/(l+3 s 9 = 3  5 Kelp($'). (3.19) 

The velocity w induced in the centre of A by its image in B is given, using (3.2), 
(3.3), (3.19) and KOl3 = - 1, by 

w = 2U,F1(a/s), (3.20) 

where 

(3.21) 

Next we consider the situation of figure 3, where the line connecting 0, to 0, 
is a t  right angles to U,. In  this case the velocity at 0, in the presence of sphere 
B but without sphere A is 

u, = U,(1 -a3/s3), (3.22) 

the induced velocity being directed against U,. The corresponding configuration 
in the steady heat-conduction problem considered by Jeffrey leads here to 

j . j T d A  = TGL,(u/s), 43.23) 

where j is a unit vector in the direction normal to the line of centres and 
3 “  P 

L$) = -- 2,=0 I; K m C )  * (3.24) 

In  the same way as for the aligned case we can deduce from this that in our two- 
sphere situation 

(3.25) 

The added mass in the situation of figure 3 is therefore 

or, upon calculation of a few coefficients, 

(3.26) 

(3.27) 

In this case the virtual mass of each sphere in the pair is larger than that of a 
single sphere because the velocity induced in the centre of one sphere by the 
other sphere is, as follows from (3.22), opposed to U,. From (3.25) we have in 
the configuration of figure 3 

(3.28) 

P L M  77 3 
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FIGURE 3. Two identical bubbles with their line of centres normal t o  the flow. 

and hence, using (3.3) and (3.22), 

where 

(3.29) 

(3.30) 

4. Calculation of (v) 
With the results of $92 and 3 a t  hand we are now in a position to calculate the 

average velocity (v) which the bubbles in the cloud of figure I attain upon 
acceleration of the liquid to a velocity U,. We borrow some of the notation in 
Batchelor (1972) and introduce P(C,) as the probability distribution of a con- 
figuration of N bubbles and P(C,I r,) as the conditional probability distribution, 
i.e. the probability distribution if there is a bubble at r,. The quantity (v) is 
the average of the velocity v(ro,CN) over all possible configurations of the N 
bubbles in the volume V .  When P(C,) and P(C, I r,) are normalized such that 

(v) is given by 

If we take the test bubble a t  ro out of the mixture and consider the velocity 
u(ro, C,) in the mixture, we know from the result (2.9) that, upon being placed 
in the liquid, the test bubble would move with velocity 3u(r,,CN) if only the 
boundary condition on the test bubble itself were to be satisfied. The boundary 
conditions on all other bubbles also have to be satisfied however. The images 
of the test bubble in the other bubbles induce an additional velocity w at ro, 
whence 

~ ( r o ,  Civ) = 3(W0, C,) +w(ro, Chi)} 
= 3U, + 3{u(r,, C,) - U,> + 3w(r,, C,). (4.3) 
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Inserting this into (4.2) and using (4.1) gives 

To obtain a first approximation to (v) in terms of the small quantity a, i t  is 
sufficient to (Batchelor 1972) consider the interaction of the test bubble with 
only one other bubble in each configuration, provided the relevant integrands 
fall off with distance r from ro more rapidly than r-3. The velocity u at ro as a 
result of a bubble a t  ro + r is given by (3.  I )  and from that relation it follows that 
this velocity minus U,, u(ror ro + r) - U,, behaves at large distance like r3, 
making the reduction to interaction of the test bubble with just one other bubble 
impossible, because this leads to an integral which is not absolutely convergent. 
On the other hand the velocity w(r,, ro +r) induced a t  the centre ro of the test 
bubble byiits image in one other bubble with centre a t  ro + r behaves [from(3.20), 
(3.21), (3.29) and (3.30)] like r6, so that with regard to w reduction to inter- 
action with one other bubble is justified. To overcome the difficulty with the not 
absolutely convergent integral we use the technique duk to Batchelor (1972; 
see also Batchelor 1974). In  the present case this consists of observing that, 
since the volume flow is U,, we have, using (4.1), 

where it should be recalled that u(ro, C,) is the velocity in the suspension at  r,. 
Note that u(ro, C,) is multiplied in (4.5) by the ordinary probability distribution 
and in (4.4) by the conditional probability distribution. The point of Batchelor's 
technique now is to subtract (4.5) from (4.4) to obtain 

+- w(r,, C,) P(C, I r,) dC,. (4.6) N !  " I  
In the absence of any long-range order in the mixture we have for large r 
P(C, 1 r,) = P(CAv), and this removes the difficulty with the integral because now 
P(C, 1 r,) - P(C,) tends to zero for large r .  Both integrals in (4.6) may now be 
reduced to two-bubble interactions and we have to specify P(r,+r), the pro- 
bability of finding a bubble centre a t  r,+r, and P(r,+r I r,), the probability 
of finding a bubble centre at ro + r given that there is one at r,. We shall assume 
that for t < 0 the bubbles are completely randomly distributed in the volume V .  
Since the distance between the two bubbles in a pair of bubblesremains unchanged 
as a result of the acceleration, this distribution is preserved a t  t = O+.  Note that 
this is not so when we deal with bubbles of different sizes because then there is 
a relative velocity in each pair of bubbles which produces changes in the pro- 
bability distribution. In  that case it is necessary to investigate whether the 
system of N bubbles evolves towards a new steady probability distribution. 

3-2 
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Clouds with bubbles of different sizes will not be considered here. For a corn- 
plet'ely random distribution 

0 for r < 2a, 

n for r a, 
P(r,+r I r,) = 

(4.7) 

J P(r,+r) = n for all r .  

Reducing now the right-hand side of (4.6) to two-bubble interactions, the first 
int'egral in the right-hand side becomes 

To carry out the remaining integration we interchange the roles of the bubbles 
and consider u(ro+r , ro) ,  i.e. the velocity at r,+r when there is a bubble at 
r,. For r < a, u(r, + r, r,) - U, is 2U,, whereas in the region a c r -= 2a, u is 
given by (3.1). Evaluating the integral in (4.8) using these expressions gives 

U,a; 3U,.a3r r) dr. 
2U0dr-3n/ a < r< 2a (- - r3_ + r5 

The first term equals - 6ccU0 while the second integral is zero, whence 

I, = -6aU0. (4.9) 

The second integral in the right-hand side of (4.6) is, after reduction to inter- 
action between two bubbles, 

1, = 3 w(ro, ro + r) P(r, + r 1 r,) dr = 3n J w(ro + r, ro) dr. J r>Za 

The velocity w(ro + r, r,) was calculated in $3  for the two independent con- 
figurations which a pair of bubbles may have with respect to U,. In  order to 
find w for an arbitrary orientation of r with respect to U, we write U, as 

When the line joining the centres is parallel to U,, w is given by (3.20) and 
(3.31), while when it is perpendicular to U,, w is given by (3.29) and (3.30). 
We have for an arbitrary configuration, therefore, 

We integrate first over the surface of a sphere with radius r .  Using spherical 
polar co-ordinates, we get 

w' = jor 27rr2w sin Bd8 = $7rrz{Fl(a/r) + F2(a/r)} U,. 
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The integration over Y from 2 a  to co has to be carried out numerically using 
(3.21) for P,(a/r) and (3.30) for P,(a/r). The result is 

This integral was computed by the author’s associate G. J. de Bruin. He carried 
out the integration with the upper bound in the infinite series in (3.21) and 
(3.30) ranging from p = 6 to p = 40, and obtained for the value of the integral 
0.0744, correct to the fourth decimal place. Hence 

I, = 0*4464aU0. (4.10) 

Taking together the results (4.9) and (4.20) we obtain for (v), which is the sum 
of 3U,, I, and I,, 

(v) = 3U0( 1 - 2a + 0.15a) = 3U,( 1 - 1.85a), (4.11) 

correct to two decimaI places. This result can be interpreted as follows. In  the 
absence of bubbles the velocity of the liquid is U,. If one bubble were present in 
the liquid this would attain the velocity 3U,, on the basis of (2.9). Hence to the 
zeroth approximation in a each bubble moves with velocity 3U,. The resulting 
volume flow of bubbles is 3U,a. Since the volume occupied by the liquid is 
1 - OL the average liquid velocity is U,( 1 - 2a) to maintain a volume flow of U,. 
If (2.9) held for a test bubble the average bubble velocity would be 3U0(1 - 2a), 
which is 3U, + I,. However, the average bubble velocity is not quite three times 
the average liquid velocity. The difference is the average of 3w, which is given 

The result (4.14) may also be converted to an effective virtual mass. We write 
by 12. 

for a bubble in a suspension of concentration a 

m = $p( 1 + ka) + O(a2). 

Denoting (v) by V we write in analogy with (1.1) and replacing i p r  by m, 

d [ m ( V  - U,)]/dt = p.rdU,/dt, (4.12) 

which gives V = 3U0( 1 - $ka) + O(a2).  

Equating the right-hand side to that of (4.11) gives k = 2 . 7 8 ~ ~  and hence 

m = &r( 1 + 2.784 + O(a2). (4.13) 

An estimate of the effect on m of a was made by Zuber (1964). He used the result 
of the following problem. A sphere of radius a is located in the centre of another 
sphere wit’h radius b > a, filled with liquid. The latter is accelerated from rest to a 
velocity U. What is the velocity attained by the sphere with radius a?  This 
problem is dealt with in many textbooks, e.g. Milne-Thomson (1968, p. 523). 
Zuber (1964) took for t,he radius b 

b = (3/47rn)), 

i.e. the average distance between spheres in a mixture with number density of 
spheres n. Then he obtained to order a2 

m = 4p7( 1 + 3a) (4.14) 
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as an estimate for m in a mixture of void fraction a!. A t  first sight it seems surpris- 
ing that this crude simplification of the real situation provides an estimate 
which, as follows from comparison with (4.13), is not far from the correct answer. 
On closer examination it becomes clear why this is the case, The term propor- 
tional to a! in (4.13) stems from the displacement, the integral I,, and from the 
contribution of w, the integral I,. They have a ratio of about 13. The first effect 
has to do with conservation of volume and is independent of the particular 
geometry of the boundaries of the flow. By his particular choice of b, Zuber 
(19G4) obtains this contribution correctly. The contribution of w vanishes in 
his configuration because of symmetry. The symmetry is distorted when the 
sphere with radius a is not in the centre of the liquid-filled sphere. So the contri- 
bution of I, is absent in Zuber's estimate, but since its magnitude is small 
compared with that of I,, his result (4.14) is close to the correct one. 

The result (4.13) was calculated for the situation of figure 1, in which there is 
a cloud of bubbles immersed in pure liquid. In  practice one is often concerned 
with a homogeneous mixture with uniformly dispersed bubbles. Such a mixture 
has, for small a, a density p( 1 -a)  and an equation of motion 

p( 1 - a)  dU,/dt = - v p ,  (4.15) 

where Ul denotes the liquid velocity. Let the average bubble velocity be V .  

( l -a)U,+aV.  (4.1s) The volume flow is 

When the mixture is accelerated, for example by the passage of a pressure wave, 
the relative velocity may, in the absence of viscosity, be calculated from 

d[m(V-Uz)]/dt =p(l-a).rdU,/dt, (4.17) 

where m is given by (4.13). 

5. Calculation of momentum flux; comparison with experimental 

The result (4.13) suggests an increase with 01 of the apparent virtual mass and 
it would be interesting to know if something like this has been observed in 
practice. The author is not aware of measurements which would enable a direct 
check on the relation (4.13). However Prins (1974) reported a series of interesting 
experimental results which have a bearing on the present work. In  describing theo- 
retically the momentum flux in a liquidlbubble mixture Prins included a term 
mnV(V- q), where the symbols are those used in the preceding section. This 
amounts to counting the flux of impulse associated with the motion of the bubbles 
as momentum of the mixture. With 

observation 

mn = pa!B(a), (5.1) 

Prins (1974) wrote for the momentum equation of the steady flow of a bubbly 
liquid through a converging tube with cross-section A ( x )  
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FIGURE 4. B a s  
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and circles refer to 

Here cw is the wall shear stress, 0 the circumference of the cross-section A ,  g the 
acceleration due to gravity and p the pressure in the mixture. 

Next he carried out experiments in which p ( x )  and a(x) were measured along 
the converging section of the tube. As a theoretical model, (5.2) together with 
other conservation equations and an equation like (1.1) were used, allowance 
being ma,de in the latter for a friction force with drag coefficient C,. Using 
independently obtained values for crw and C,, numerical solution of these equa- 
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t’ions, combined with the measured values of p ( x )  and a(x) ,  permitted deterniina- 
tion of B as a function of a (for details the reader is referred to the original report). 
Prom (5.1) it  follows that B(a) = m/pr,  so that according to our results (4.19) 

B(a) = a( I + 2.7801). (5.3) 

Figure 4, taken from Prins (1974), shows the results he obtained in the manner 
described above. There is a striking discrepancy between the qualitative be- 
haviour of B in this figure, where it rapidly decreases with a, and our result 
(5.3), which predicts an increase of the virtual mass with a. Of course, in a real 
mixture the bubbles are not all of the same size nor are they perfectly spherical, 
but it becomes obvious from inspecting the various contributions to B(a)  in 
(5.3) that the analysis would always show an increase of m with a, the numerical 
value 2.78 in (5.3) presumably taking a different value for a real mixture. This 
casts doubts on the validity of the second term on the left-hand side of (5.2), 
the relative-motion term. To settle this we calculate the flux of momentum in 
the mixture for a given a, a given gas velocity V and a given liquid velocity V,. 
The volume flow is denoted by U,, as before: 

(1-a) q+av = u,. (5.4) 

Since we may, for small a, neglect the contribution of the gas to the momentum 
flux, we want to  know the momentum flux in the liquid only. To this end we 
introduce a function F(ro, C,) which is unity when ro is in the liquid and zero 
when ro is in a bubble. Such a function has been used before in the analysis of 
suspensions (see, for example, Lundgren 1972) and is defined as 

N 

k= 1 
m o ,  C,) = 1 - 2 H(a  - Ira- rkl}, 

where H is Heaviside’s unit step function. With this definition of F 

The momentum flux in the liquid is given by 

(5 .5)  

Upon multiplication of the dyadic M in (5.7) by the unit vector i in the direction 
of U,, we obtain the average momentum flux in that direction. The contribution 
of (u . i)2 to the right-hand side of (5.7) is the only one which survives after averag- 
ing, whence 

1M = N! F(ro, C,) (u . i)2P(C,) dC,. (5 .8 )  ”s 
We write u(ro, C,), the local velocity in the liquid or in a bubble, as 

u = u, + u’, 

and insert this into (5.8). Because 
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and because of (5.6) we obtain 

The integral in (5.9) can be reduced to averaging over one bubble in each con- 
figuration. With a bubble of velocity V ,  and when there is only one bubble in 
each configuration, U’ is given by 

, (V-U,)a3  (V-U,)a3 .r  
r ,  2r5 u = -  + 3  

2r3 

or in spherical polar co-ordinates 

(5.10) 

The square (u’ . therefore decreases as r-6 and this is rapidly enough to permit 
averaging over one bubble in each configuration. The integral in (5.9) therefore 
reduces, using (5.5)) to 

n 

J {u’(ro, ro + r) . i}2P(ro + r) d r  
O < r i m  

= n J r > a  {u’(ro, ro + r) . i}2 dr .  

Inserting (5.10)) we obtain 

Prom this result we find 

N/p = (1  - a) u: - 2aU0( V - U,) + ba( v - Uo)2. (5.12) 

For practical purposes the liquid velocity is more convenient than U,. From (5.4) 
and (5.12) we finally obtain, neglecting terms of order a2, 

M / p  = U f (  1 -a) + &x( V - Ul)2. (5.13) 

Prins (1974) and others use the expression [cf. (5.2)] 

M / p  = ?$(I -a)+aBV(V- Q). (5.14) 

The result (5.13) of our analysis suggests that the second term on the right-hand 
side of (5.14) should be proportional to a( V -  U,)2. If this were written as in 
(5.14) , we should need for agreement 

B(a) N ( V -  q ) / V .  (5.15) 

If a mixture is accelerated from rest we may use (4.17) for the relative velocity. 
When in addition m increases with a, represented by 

m = L  2p 7 1  ( +k‘a), k’ > 0, 
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then the expression (5.15) for B(a) behaves as 

B(a) N 1-+(1+K)a, (5.16) 

which shows a decrease in B(a)  with a, as observed by Prins (figure 4).  The 
constant K in (5.16) should be muchlarger than K = 2.78, the value corresponding 
to (4.13), in order to obtain quantitative agreement with Prins’ results. However 
a momentum flux mnV(V- L$) cannot be made to agree with Prins’ results 
because we found that the effective virtual mass increases with a. A flux, as 
calculated here [see (5.13)], explains Prins’ result qualitatively. 

6. Conclusion 
It is shown that a cloud of gas bubbles immersed in an acceleratedliquid attains 

as a result of hydrodynamic interaction a velocity which is less than that which 
a single bubble would attain. This result may be interpreted as corresponding to 
an increase in the virtual mass. An expression for the momentum flux is derived 
by statistical averaging. This appears to differ from the one previously used in 
the literature. The expression obtained here, together with the result on virtual 
mass, explains qualitatively the observed behaviour of the contribution to the 
momentum flux of relative motion between bubbles and liquid. 
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and in particular Prof. M. S. Plesset for the arrangement of that Scholarship. 
Thanks are due to Prof. G. K. Batchelor and Prof. T. Y. Wu for some useful dis- 
cussions. The author feels indebted to Dr D. J. Jeffrey for his helpful corres- 
pondence, in particular regarding the two-sphere problem. 

Appendix. The details of the solution of the two-sphere problem 

By D. J. JEFFREY 

Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge 

Equation numbers quoted from Jeffrey (1973) will be prefixed with J to distin- 
guish them from those of the present paper. As pointed out in the main paper, 
the solution to the heat-conduction problem given in Jeffrey (1973) is needed 
only in the limit of non-conducting spheres, and so the parameters a and p, 
defined in (J3.2) can be set equal to 0 and -n/(n+ 1) and removed from the 
equations. If the applied field G is written G o i + G l j ,  where i and j are unit 
vectors parallel and perpendicular to the line of centres, then the solution out- 
side the spheres is (55.2): 

1 m  n+l 
T = G . x +  C G ~ { ~ ~ ~ ( ~ ) n f 1 P ~ ( c o s 6 , ) + g ~ ~  (:) P:( cos 6,) cos mq5, 

m=O n=m 
(A 1) 
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where the co-ordinates are given in figure 2 and the gzn and g$& are coefficients 
to be determined. Application of the boundary condition aT/an = 0 gives 

where the R used in (55.5) has been replaced by s for consistency with the main 
paper. Solving (A 2) for g$,L is now the main difficulty and several methods for 
this have been proposed (Ross 1970). Here each coefficient is expressed as a 
series in a/s. Using symmetry to replace the ggA by 

m-1 (2) (A 3) agmn = g??,'n = ( - 1 )  gmn) 

one writes the solution as 

and calculates the coefficients Kw,np by substituting (A 4) into (A 2) and equating 
coefficients of powers of a/s. Thus (A 2) becomes 

giving 

The calculation for sphere A of 

S = TndA = i TcosB,dA+j TsinO,cos$dA s s s 
proceeds by using (55.3) and ( A  3 )  to rewrite ( A  1)  as 

1 "  

T = G . x +  2; C aGmg,,n(n~ni 'P~(cosOl)cosm$ 
m=O n=m \71/ 

n + q  
m=O n=m q=m q+m 

+ 3 l a ,  (-l)m-laGmgDLn(:) n+l C w ( ) (g)qP~(cos81)cosm$. 

This expression for T can now be substituted int'o the definition of S and the 
integration done simply by using the orthogonality of spherical harmonics. The 
result is 

m n+2 n+l 
+j+lgll+ n=l c Glgln(;) ( )). 

The two summations can be removed using ( A  2) ,  the expression for S then 
becoming 

S = 37G, ig,, - 37G1 jgll .  
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Finally, substituting the solution (A 4) gives the expression for S as 

The results for S a,re quoted in the main paper as (3.10) and (3.23) and the 
recurrence relations (A 5 )  and (A 6) as (3.12) and (3.13).  The method just; des- 
cribed gives the value of S as a series in a/s, just as the method of reflexions does; 
the advantage of this method is that the recurrence relations (A 5) and (A 6) 
enable any number of terms in the series to be calculated rapidly, something not 
possible using reflexions. 
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